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Abstract

We develop an analytic model of time-resolved fluorescent imaging of photons migrating through a semi-infinite turbid
medium bounded by an infinite plane in the presence of a single stationary point fluorophore embedded in the medium.
In contrast to earlier models of fluorescent imaging in which photon motion is assumed to be some form of continuous
diffusion process, the present analysis is based on a continuous-time random walk (CTRW) on a simple cubic lattice, the
object being to estimate the position and lifetime of the fluorophore. Such information can provide information related
to local variations in pH and temperature with potential medical significance. Aspects of the theory were tested using
time-resolved measurements of the fluorescence from small inclusions inside tissue-like phantoms. The experimental
results were found to be in good agreement with theoretical predictions provided that the fluorophore was not located
too close to the planar boundary, a common problem in many diffusive systems.
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1. Introduction

Fluorescence techniques are increasingly being used to
describe biological processes at molecular and cellular lev-
els. Newly developed fluorophore-conjugated probes can
greatly improve the specificity of optical imaging, poten-
tially making it a tool of choice for many biomedical ap-
plications, in particular for those applied to cancer diag-
nostics and related animal models [1, 2]. Different data
collection modalities have been suggested in the literature
to realize fluorescent imaging starting from the least ex-
pensive continuous-wave (CW) schemes to frequency- and
time-domain techniques capable of providing significant
amounts of biomedically useful information.

A good recent review of fluorescence imaging is given in
an article by Ntziachristos together with an extensive list
of references, [3]. Until now, biomedical applications of flu-
orescence techniques have mainly been restricted to imag-
ing thin samples or surface imaging because of the deleteri-
ous effects of random scattering of photons in tissues. Such
scattering can significantly increase the observed fluores-
cence lifetime relative to the intrinsic lifetime of a single
fluorophore. This problem can be partially compensated
for by a judicious application of theoretical analysis based
on some variant of transport theory. Several approaches
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to it have been discussed in recent papers by Kumar et
al, [4, 5]. An analytical approach to fluorescence problems
based on random walk theory by Hattery et al [6] has been
used to analyze the case in which the fluorescence lifetimes
are quite short. In the present paper we analyze the con-
verse case which is more consistent with experimental data
gathered in our laboratory, as described below. The model
is simplified in that the trajectory of only a single photon,
rather than those of an ensemble of photons, is followed.

There are many approaches to modeling the motion of
photons in a turbid medium. Certainly the most accurate
of these requires the application of a rigorous formulation
of transport theory. In practice this requires a considerable
investment in numerical analysis as well as a knowledge of
physical parameters not easily estimated experimentally.
This is not really practical because transport theory can
furnish results valid only for specific sets of parameters.
Due to inherent difficulties in the practical application of
transport theory as a compromise it is generally replaced
by some simpler variant of diffusion theory. An early ver-
sion that goes one step beyond the diffusion approxima-
tion is that of the lattice random walk in discrete time,
[7]. This was later generalized to a model based on the
continuous-time random walk (CTRW), [8].

A discussion of some advantages of the random walk
approach is to be found in a review in [9]. A formula-
tion based on lattice random walk methodology is applied
here to problems raised by fluorescent imaging and sev-
eral details of the theory are described in the next sec-
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tion. Alternative approaches have been proposed recently
for measuring fluorophore lifetimes, [10, 11]. In [10] the
authors used an empirical linear relationship between the
fluorophore depth and time of the maximum fluorescence
intensity together with the relationship between the ob-
served time decay slope and the actual fluorescence to es-
timate the fluorophore depth and lifetime, However, the
range of applicability of these basic relationships is not
fully investigated.

This defect will be eliminated in our present formula-
tion. In [11] application of scaling relations for a given
target depth is proposed to extract the intrinsic lifetime
from the observed time decay slope of a deeply embedded
fluorophore (the corresponding depth is to be estimated in
advance, using for example, the method of [12], based on
the analysis of 2D continuous-wave fluorescence intensity
distributions. In the present paper we analyze a more gen-
eral case, deriving an analytical expression for the flux of
the time-resolved fluorescence photons from a target em-
bedded in a semi-infinite turbid media and bounded by an
absorbing plane. By fitting the experimentally obtained
curve of the time-resolved flux to this model we are able,
in principle, to reconstruct the position and the lifetime of
a fluorophore, which, in our experiment, was modeled by
a fluorescent pellet.

2. Theory

2.1. Specifics of the model
Two optical constants will be used to characterize phys-

ical properties of the medium: the transport-corrected
scattering coefficient, µ′s, and the absorption coefficient,
µa. In the simplest version of the random walk model, the
turbid medium is modeled as a semi-infinite simple cu-
bic lattice in which the spacing between adjacent sites is
taken to be a single transport-corrected scattering length,
k0 =

√
2/µ′s as derived in [13, 14]. The coordinates of a

single site will be denoted by r = (x, y, z), each compo-
nent of which is taken to be an integer. The ranges of
these component are −∞ < x, y < ∞ and 0 ≤ z < ∞ so
that z = 0 defines the plane separating the medium from
the exterior, and the initial position of the photon is taken
to be r0 = (0, 0, 1).

Let pn(r|r′) be the probability that a random walker
in discrete time, originally at r′, is at r at step n. One de-
fines a CTRW in Laplace transform space by multiplying
the propagator in discrete time by the n’th power of the
Laplace transform of the appropriate pausing time density,
[15, 16]. The plane z = 0 is assumed to be an absorbing
boundary so that pn(r|r′), or the equivalent transform, is
required to vanish on that plane. We will later be inter-
ested in the probability that the photon, or random walker,
reaches the exit site Rexit = (X,Y, 0) at a dimensionless
time τ∗ which may be written in factored form as µ′sct

∗, c
being the assumed constant speed of light in the medium.
Another important descriptor of the trajectory in random

walk terminology will be denoted by f
(j)
n (r|r′), which is

the probability that the photon arrives at r for the j’th
time at step n having initially been at r′. In this notation
f

(1)
n (r|r′) is the probability to move from r′ to r for the

first time in n steps.
In the simplest version of the model treated here, i.e.,

the single fluorophore model the fluorophore site is s =
(s1, s2, s3). The photon begins moving through the medium
at τ = 0, the course of its motion being described in terms
of a CTRW, to be described in more detail shortly. Dur-
ing its trajectory the photon may or may not be excited
before eventually being absorbed on the plane z = 0. By
an excitation event we will mean a change of state at a
time τ ′ < τ at which the photon comes into contact with
the fluorophore and, with efficiency ε, produces a change
in wavelength. It will be assumed that the occurrence of
a single excitation precludes any further excitation events.
Whether such an excitation has occurred can be deter-
mined from reflectance measurements made on the planar
interface since the wavelength is changed by the excita-
tion. A second effect of an excitation event is to introduce
an extra time delay into the overall photon migration.

The random walk in our model will be simplified in that
steps will be allowed to nearest neighbors only. The surface
of the plane is taken to be absorbing, which means that
when a photon, or its surrogate random walk, reaches the
plane it registers as a source of intensity and is immediately
removed from the system, the time and exit site noted at
the event. These provide information related to the state
of the underlying tissue.

To describe the process more precisely we define two
pausing-time densities, ψ1(τ) and ψT (τ). The definition
of a pausing-time density for a CTRW is a probability
density for the amount of time taken between two succes-
sive steps of the random walk. The time taken to step
between two adjacent sites, neither of which contains a
fluorophore is described by an exponential pausing-time
density, ψ1(τ) = e−τ . When the photon comes into con-
tact with the fluorophore it is either transformed into an
excited state by the fluorophore, in which case the pausing-
time density is either taken to be ψT (τ) = (1/T )e−τ/T ,
the excitation efficiency being equal to ε, or it is not,
in which case the pausing-time density remains equal to
ψ1(τ). No more than a single excitation is allowed to oc-
cur during a single trajectory. After an excitation event
the pausing-time density returns to the original ψ1(τ) un-
der the assumption that the scattering coefficient remains
unchanged. The measureable data from a single photon
consists of the time and position of its arrival at the inter-
face.

The pausing time densities are therefore

ψ1(τ) = e−τ , ψT (τ) =
1
T
e−τ/T (1)

The first of these governs the times between successive
steps in which a) either the photon moves to one of six
adjacent sites, none of which contains the fluorophore, or
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b) the photon has interacted with the fluorophore on an
earlier step and therefore cannot interact with it again.
In either situation the probability density for the time be-
tween successive steps of the random walk is equal to ψ1(τ)
with a mean time equal to 1. Only at the time of an exci-
tation event does the pausing time density switch to being
ψT (τ) for a single step. Since the occurrence of an excita-
tion slows the process of photon migration the physically
interesting range of T is T > 1. We parenthetically remark
that it is also possible to deal with more general choices
of pausing-time densities than the ones in Eq.(1) but our
analysis will be restricted to the simplest case specified
above.

2.2. Surface flux
2.2.1. Discrete time

There have been a number of earlier theoretical analy-
ses of fluorescence-based lifetime imaging techniques at all
levels of mathematical sophistication, e.g., investigations
by Patterson and Pogue, [17], and Hebden and Arridge,
[18]. We follow the analysis given in [19] which has most
of the results needed for the preliminary derivation in dis-
crete time except that the delay time at the fluorophore
in the earlier works restricted the delay caused by an exci-
tation event to be an integer number of time steps rather
than being arbitrary as would be required for general es-
timation purposes. This defect is overcome by the use of
the CTRW analysis based on the two pausing-time densi-
ties exemplified by Eq.(1). We refer the reader to [19] for
details of the analysis in the discrete time domain which
is the natural starting point for the analysis.

By way of notation the generating function correspond-
ing to a discrete sequence {hn}, n = 0, 1, 2, . . . will be de-
noted by h̄(ξ) =

∑∞
n=0 hnξ

n. The result found in [19] for
the generating function corresponding to the trajectory
taking a photon from r0 to s at least once in which an
activation event occurs and then to Rexit was found to be

ḡ(ξ; Rexit|s|r0) =
∞∑
n=0

gn (Rexit|s|r0) ξn

=
ξεp̄(ξ; Rexit|s)p̄(ξ; s|r0)
6 (1 + ε [p̄(ξ; s|s)− 1])

(2)

In particular, when ε [p̄(ξ; s|s)− 1]� 1, this simplifies to

ḡ(ξ; Rexit|s|r0) ≈ ε

6
ξp̄(ξ; Rexit|s)p̄(ξ; s|r0) (3)

The indicated inequality is rarely violated for parameters
typical in biological tissues. We therefore use the simplified
representation in Eq.(3) rather than the full Eq.(2) in later
calculations.

2.3. Transition to time dependence
Our ultimate goal is to find the time-dependent behav-

ior of the flux of photons which have passed through s with
at least one activation event and is thereafter absorbed

at Rexit at time τ∗. The analysis is based on the time-
dependent inverse of the generating function in Eq.(3), a
function to be denoted by g (τ∗; Rexit|s|r0) . Observe that
in this picture the trajectory taking the photon from r 0

to Rexit can be decomposed into four parts; the path from
r0 to s at which the excitation occurs, the sojourn at s,
a journey made from s to (X,Y, 1) and the final step tak-
ing the photon from (X,Y, 1) to Rexit = (X,Y, 0). Since
an activation event is assumed to occur, the derivation
necessarily depends on both of the pausing-time densities
appearing in Eq.(1).

In the present analysis the generating functions of the
last subsection play an important intermediate role in trans-
lating discrete results to ones in continuous time. A stan-
dard technique for doing this in CTRW methodology is to
replace the generating function parameter by the Laplace
transform of the pausing time density. This is modified
slightly in the present analysis because there are now two
pausing-time densities in Eq.(1). By way of notation we
denote the Laplace transform of an arbitrary function of τ ,
g (τ) , by ĝ(η) =

∫∞
0
e−ητg(τ)dτ, so that ψ̂1(η) = 1/(1+η)

and ψ̂T (η) = 1/(1 + ηT ).
Out of the n steps taken in the discrete picture an exci-

tation occurs in a single step but not in the remaining n−1
ones. Therefore the Laplace transform of the probability
density for the total time spent during a single trajectory
consisting of n steps using the pausing time density ψ1(τ)
and a single one using ψT (τ) is

ϑ̂n(η, T ) =
1

(1 + η)n−1(1 + ηT )
=

1

T (1 + η)n−1

(
η +

1
T

)
(4)

The formal expression for the Laplace transform of the
propagator which takes the photon from r0 to Rexit, in-
cluding a visit to the fluorophore producing an excitation,
is

ĝ(η; Rexit|s|r0) =
ε

6(1 + ηT )

∞∑
n=1

gn (Rexit|s|r0) e−nµa

(1 + η)n

(5)
where the gn (Rexit|s|r0) are the coefficients generated by
expanding Eq.(3) in powers of ξ. Equation (5) can there-
fore be regarded as a generating function defined in terms
of the parameter e−µa/(1 + η). The efficiency coefficient,
ε, plays a secondary role in the calculations since only
the space- and time- dependence of the detected inten-
sity provides potentially useful data while ε itself is not
readily measureable. It is physically obvious that one
or the other of the two parameters, µa or T, will pre-
dominate in determining the asymptotic behavior of the
time-dependent g (τ ; R exit|s|r0). Dominance of the ab-
sorption or fluorescence lifetime in the asymptotic behav-
ior of g (τ ; Rexit|s|r0) is determined by the product µaT ,
i.e., if µaT ≤ 1 then the asymptotic slope of the time de-
pendence of the fluorescence intensity is determined by ab-
sorption (decays as exp(−µaτ)), while in the opposite case
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the duration of emission (fluorescence lifetime) overwhelms
the effect of internal absorption and the asymptotic slope
decays as exp(−τ/T ) as a function of time.

Two generating functions will be needed in the deter-
mination of g (τ ; Rexit|s|r0) . These will be expressed in
terms of Laplace transforms of a function H(τ ; u|v) which
will appear quite frequently in the following analysis:

H(τ ; u|v) = e−τ(1+µa)Iu1−v1

(τ
3

)
Iu2−v2

(τ
3

)
Iu3−v3

(τ
3

) 1
τ

(6)
which can be written in factored form as H(τ ; u|v) =
Q(τ ; u|v)e−µaτ . The vectors u and v are (u1, u2, u3) and
(v1, v2, v3) respectively and the Im(τ/3) are modified Bessel
functions of the first kind, [20]. A derivation of this for-
mula is provided in the section A of the Supplementary
Material accompanying this paper. A significant property
of Q(τ ; u|v) is its approximate behavior as τ →∞ where
it is found that for fixed |u− v|2 it behaves as

Q(τ ; u|v) =
(

3
2π

)3/2 1
τ5/2

exp
[
−3|u− v|2

2τ

]
(7)

Two generating functions will be needed to derive an
approximation to the function ĝ (η; Rexit|s|r0) follows from
Eq.(3) (see the section A in the Supplementary Material).
These are

p̄

(
e−µa

1 + η
; s|r0

)
= 6(1 + η)

∫ ∞
0

e−(η+µa)τ
′
Q(τ ′; s|r0)dτ ′

p̄

(
e−µa

1 + η
; Rexit|s

)
= 6(1 + η)

∫ ∞
0

e−(η+µa)τ
′
Q(τ ′; Rexit|s)dτ ′

(8)

To simplify the calculations we will assume that the
time is sufficiently long that the coefficient (1 + η) can
be replaced by unity. It is then possible to express the
transform as an infinite series:

ĝ (η; Rexit|s|r0) ≈ 1

T

(
η +

1
T

) ḡ( e−µα
1 + η

; Rexit|s|r0

)
(9)

There are two approaches to representing the function
g (τ ; Rexit|s|r0) ; the first in which one finds the Laplace
representations in Eq.(3) with the components specified in
Eq.(8) and the second requires one to find the equivalent
convolution form in the time domain that follows from the
transforms. In this work we employ the second approach
and return to Eq.( 3) to find an explicit representation of
g(τ ; Rexit|s|r) in terms of a double integral because that
equation, as written, is a product of transforms. Therefore
the Laplace inverse is equivalent to a convolution in the
time domain. The product in Eq.(3) is equivalent, at long
times, in the time domain to

g (τ ; Rexit|s|r0) ≈ 6
T

∫ τ

0

e−µaτ
′
Q(τ ′; Rexit|s)dτ ′

×
∫ τ−τ ′

0

e−µaτ
′′
Q(τ ′′; s|r0)e−(τ−τ ′−τ ′′)/T dτ ′′

(10)

A numerical evaluation of the double convolution in
this last equation is computationally demanding due to
the long tails of the terms in the integrand so that using
that representation directly for fitting experimental data
presents extreme difficulties. However, the expression can
be reduced to a single convolution with a somewhat more
complicated integrand. We first note that Eq.(2.10) can
be written as (see Appendix A)

g(τ ; Rexit|s|r0) =
6
T

∫ τ

0

e−(τ−τ ′)/T−µaτ
′
I(τ ′)dτ ′, (11)

where I(τ ′) incorporates the integration over τ ′′, i.e.,

I(τ ′) =
∫ τ ′

0

Q(τ ′′; Rexit|s)Q(τ ′ − τ ′′; s|r0)dτ ′′ (12)

An analytic expression can be derived for I(τ) in terms
of the variables

β1 =
3|Rexit − s|2

2
, β2 =

3|s− r0|2

2
, β =

(√
β1 +

√
β2

)2

(13)
(see Appendix A) given by

I(τ) =
27β3/2e−β/τ

8π5/2β1β2

(
1

τ7/2
+

γ

τ5/2

)
, (14)

so that Eq.(11) represents g(τ ; Rexit|s|r0) as a single con-
volution integral. The indicated representation reduces
the required amount of computation over that needed when
starting from the double convolution form and enables pa-
rameter estimates to be obtained on the order of several
seconds (more than a 100-fold speed-up over the double
convolution form for typical parameters). An expression
for g(τ ; Rexit|s|r0) in closed form can be derived when
µa = 0.

Finally, the theoretical predictions in Eqs.(11) and (14)
do not include the effects of instrumental noise on the ex-
periment. By this we mean the error in the arrival time
of a photon at the absorbing boundary relative to its the-
oretically predicted value. This effect will be quantified
in terms of a function, ϕ(τ), defined as the probability
density of the error in the arrival time of a photons due
to system noise. Using Eq.(11) as a basis of a forward
model we incorporate the finite width of instrumental re-
sponse function (IRF), ϕ(τ) into the forward model by an
additional convolution. In other words, the expected ex-
perimental curve G(τ) is defined to be the convolution of
g(τ ; Rexit|s|r0) and ϕ(τ),

G(τ ; Rexit|s|r0) = g(τ ; Rexit|s|r0) ∗ ϕ(τ), (15)

where ∗ denotes a convolution. The reconstruction algo-
rithm as implemented was based on curve fitting to the
model described in Eq.(15), which we use to analyze exper-
imental data and directly compare theoretical estimates
with experimental data over a wide time range.
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3. Results

Before presenting the results of model simulations and
the results from a gel-phantom experiment, it is useful to
mention some estimates of the experimental parameters
derived earlier from measurements made in our labora-
tory. As already mentioned the translation of the real
time, t, to dimensionless time, τ , is achieved by means of
the formula τ = µ′sct. It is well-known that in many bi-
ological tissues µ′s is on the order of 1 mm−1, and that
the absorption coefficient, µa is likely to be in the range
from 0.002 to 0.05 mm−1. Nominal fluorescence lifetime T
for many commercial near-infrared fluorescent dyes (e.g.,
AlexaFluor750 from InvitrogenTM or IRD from LiCorTM),
is in the range 600ps ≤ T ≤ 1000 ps.

Physical coordinates r̃ in the infinite turbid medium
are usually related to the dimensionless coordinates r on
the random walk lattice model through the transport-corrected
scattering length [13, 14], k0 =

√
2/µ′s, as a conversion fac-

tor. More generally, the relationship between r̃ and r can
be written as

r̃ = k0r + d(e), (16)

where de is an offset factor which can be non-zero de-
pending on the type of the boundary conditions used. It
should be noted that the solutions of the photon migration
equations for the semi-infinite medium, e.g. Eqs. 10 and
11, are obtained using the method of images [9], in which
the imaginary sources are added which then together with
the real sources satisfy the necessary boundary conditions.
Two of the most popular types of the boundary condi-
tions are so-called “zero boundary”, requiring zero flux at
the z = 0 plane, and “extrapolated boundary” which re-
quires that the zero flux exists at some plane different from
z = 0 plane which is shifted outward from the scattering
medium by some distance dz (hence d(e) = (0, 0, dz), in
equation 16). For totally absorbing boundary without re-
fraction index mismatch it is shown [21–23] that the most
accurate description of photon diffusion in a semi-infinite
medium is obtained, if one assumes dz ≈ 0.71/µ′s. In
many tissues (and phantoms, used to simulate them) the
refraction index is approximately n ≈ 1.4 (corresponding
speed of light c ≈ 0.21 mm/ps). Corresponding refrac-
tion index mismatch between the turbid medium and the
air results in increased value of dz ≈ 1.86/µ′s (see Ta-
ble 2 of the paper [22], presenting values of for the wide
range of index mismatches). In the random walk frame-
work such “extended boundary” approach is equivalent to
an assumption of larger depth of the fluorophore, if “zero
boundary”-based equations (that we used in the text and
the Appendix A) are applied. Thus, the physical depth of
the fluorophore should be substituted by

s̃(e)z = s̃z + dz = s̃z +
1.86
µ′s

. (17)

Since our model equations (Eqs. 10,11) utilize the dimen-
sionless units, we also write the expression for the equiva-
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Figure 1: Model predictions for different values of (a) sz = 2, 4, 8,
16, 32, and (b) T = 50, 100, 150, 200, 250 and 300 in dimensionless
units.

lent fluorophore depth (Eq. 17) in the dimensionless ran-
dom walk lattice units using the conversion rule in Eq.
16,

s(e)z = sz + dzµ
′
s/
√

2 ≈ sz + 1.32 (18)

In many biomedical applications the fluorophore depth
cannot be directly measured, requiring development of spe-
cific analytical tools to estimate this parameter from 2-D
imaging data (see, e.g., [10, 12]). An alternative approach
is to apply curve fitting of experimental time-resolved data
to the theoretical model of fluorescence intensity distribution.
To avoid overestimating of the depth, proper boundary
condition and refractive index mismatch should be taken
into account, using Eq. 18. For medium refraction in-
dex of n ≈ 1.4 true dimensionless fluorophore depth can
be obtained from the fitted value, using the relation sz =
s
(e)
z − 1.32, or in physical units s̃z = k0(s(e)z − 1.32). The

second major parameter, T , can be easily measured for
isolated fluorophores. However, to extract potential vari-
ations in the fluorescence lifetime due to fluorophore en-
vironment (pH, temperature etc), which is considered a
promising tool for medical diagnostics [24], it is important
to take into account photon migration effects [4, 5]. The
influence of the major optical/geometrical parameters on
the shape of the proposed forward model is illustrated in
Fig. 1, where several curves g(τ ; Rexit|s|r0), corresponding
to different values of the fluorophore depth (Fig. 1a) and
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Figure 2: The random walk model G(τ) (solid black line) agrees
very well with experimentally observed data (circles). The model
parameters obtained from the fit agree well with the expected values,
Tfit = 129 vs expected T = 135, s̃z = 14 mm vs 14.5 mm, and
σIRF = 151 psec vs 145 psec. Parameter µa was fixed at µa=0.0035.

fluorophore lifetime (Fig. 1b) are shown. It is evident that
the main effect of changing the depth of the fluorophore,
sz, is to shift the peak of g(τ ; Rexit|s|r0). As sz increases
the time τmax at which the peak occurs also increases. The
main effect of the parameter T in the range of interest, is
to change the slope of the tails in the resulting curves, i.e.,
the rate of the exponential decay. It is therefore possi-
ble that the two parameters might be obtained indirectly,
without fitting the full model to the data. Note that the
convolution with ϕ(τ) will change the position of the peak
for small sz, without affecting the slope of T . To analyze
our data we assumed that ϕ(τ) is a Gaussian whose width
is specified using the standard deviation parameter, σIRF.
This parameter can be measured or estimated as one of
the model parameters in our model-based reconstruction.

To verify our model we used time-resolved measure-
ments from small fluorescent inclusions (fluorophores) in-
side the tissue-like phantoms. These tissue-like phantoms
were constructed using agarose gel inside which small flu-
orophores were embedded at varying depths. The mea-
surement of the fluorophore lifetime is performed using
measurements from the same fluorophores placed at the
surface of the gel. The experimental set-up has been de-
scribed in [25], the excitation/emission wavelengths used
were 750 and 780 nm, respectively. The optical proper-
ties of the background were µ′s = 0.9 mm−1 ([11]) and
µa = 0.0035 mm−1 (as determined from an asymptotic
slope of time-resolved intensity of backscattered excitation
light, [26]). The measured instrumental response function,
ϕ(τ), to a first approximation can be considered Gaussian
with σIRF = 145 psec, although it is possible also to an-
alyze a model in which Eq. 15 is convolved directly with
a more accurate empirical function ϕ(τ). We measured
G(τ) on a gel phantom with a fluorophore embedded at
different values of sz. The expected values of other param-

eters were T = 135 ± 14 nsec (corresponding to T = 0.7
nsec), and µa = 0.004± 0.0004 mm−1. The random walk
model in Eq.(11) itself does not give a good fit to the data
(circles) for short times of flight, but combined with the
proper instrumental response function it gives an excel-
lent fit (Fig. 2). The estimates of the parameters ob-
tained T̂ = 129, ŝz = 10.2 are in very good agreement
with the expected values (135 and 10.3 in dimensionless
units). Figure 3 shows the result of fitting G(τ ; Rexit|s|r0)
to the experimental data. The random walk model yields
very good agreement with the experimental data, but de-
viations from the model predictions start to appear rapidly
as sz decreases (sz = 7.5 mm, Fig. 3c).

Results of curve fitting of the theoretical model to ex-
perimental data, obtained for different fluorophore depths
are shown in Figs. 4a, b, where estimated values of the
inclusion depth and fluorescence lifetime are plotted ver-
sus measured depth and intrinsic lifetime, respectively.
Discrepancies between the reconstructed lifetimes and the
nominal value of 0.7 nsec, reported by the dye manufac-
turer (Invitrogen), are within 10%. The accuracy of esti-
mates of depths proved to be better than 12% for z ≥ 9.5
mm.

4. Discussion

We have shown that using the CTRW model on a three-
dimensional simple cubic lattice describes experimentally
observed curves quite well when the depth of the fluo-
rophore is greater than 9 mm in our laboratory. We also
demonstrated experimentally that the two most impor-
tant parameters, the depth of the fluorophore, sz and the
fluorophore lifetime, T , can be estimated with reasonable
accuracy, i.e., on the order of 10%, while similar accu-
racy can be achieved for sz, provided that sz is sufficiently
deep, i.e. at deeper depths of the fluoresence pellet, but
is sensitive to the value of sz. This reconstruction tech-
nique is yet to be tested on a biological tissue sample but
it seems reasonable to expect that this would not change
the outcome.

The implementation of the model that we use is not
fully analytical but relies on numerical evaluation of the in-
tegral in Eq.(11). With the reduction of the relevant inte-
grals from a double-convolution form to a single-convolution
form, using Eq.(14) the computational demand can be sig-
nificantly reduced and a single estimate on a given time-
resolved curve can be obtained in a matter of several sec-
onds using the Python programming language and the as-
sociated scientific libraries for Python (NumPy, SciPy).

Our analysis has been considerably simplified by re-
stricting the form of the random walk to be nearest-neighbor
and isotropic, the form of the pausing-time densities to
be negative exponentials, by considering the effect of a
single fluorophore only, and by assuming that the turbid
medium is semi-infinite. These restrictions, however, are
not strictly necessary for obtaining the major results pre-
sented in this paper. The major conclusions of our anal-
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Figure 3: The CTRW model fitted to the observed value of G(τ),
with a fluorophore lifetime of T=135 mm, µa = 0.004 mm −1 and
for sz=7.5, 9.5, and 10.5 mm We used the experimentally observed
ϕ(τ) with σIRF = 145 psec.
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ysis for time-gated measurements remain valid provided
that distances are macroscopic on the scale of transport-
corrected scattering coefficients, that the pausing-time den-
sities have finite first moments, and that the transition
probabilities are isotropic. For example, the assumption
of optically isotropic optical parameters can be dispensed
with and the problem analyzed using techniques similar to
those in a study by Dudko et al, [27]. An extension of the
analysis to allow for more than a single fluorophore can be
developed following formalism originally given in [28] and
applied to an optical problem in [29]. The present the-
ory can also be generalized to deal with both transillumi-
nation measurements and anisotropic optical parameters
using mathematical techniques developed recently in [30].
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Appendix A. Reducing the double convolution to
a single convolution

We first rewrite the double convolution in Eq.10 as

gA (τ ; Rexit|s|r0) =
6
T

∫ τ

0

e−µaτ
′
Q(τ ′; Rexit|s)dτ ′×

×
∫ τ−τ ′

0

e−µaτ
′′
Q(τ ′′; s|r0)e−(τ−τ ′−τ ′′)/T dτ ′′ =

∫ τ

0

dτ ′×

×
∫ τ−τ ′

0

dτ ′′e−µa(τ
′+τ ′′)Q(τ ′; Rexit|s)Q(τ ′′; s|r0)e−

τ−τ′−τ′′
T ,

(A.1)

and after substituting τ ′ = u− τ ′′, 0 ≤ u ≤ T we find

g(τ ; Rexit|s|r0) =
6
T

∫ τ

0

du

∫ τ−u

0

dτ ′′×

× e−µauQ(u− τ ′′; Rexit|s)Q(τ ′′; s|r0)e−
τ−u
T

=
6
T

∫ τ

0

due−µaue
τ−u
T

∫ u

0

dτ ′′Q(u− τ ′′; Rexit|s)Q(τ ′′; s|r0)

(A.2)

This double-convolution integral can be written as

g(τ ; Rexit|s|r0) =
6
T

∫ τ

0

e−(τ−τ ′)/T−µaτ
′
I(τ ′)dτ ′, (A.3)

where the function I(τ ′) includes the integration over τ ′′.
An analytic expression for I(τ ′) will now be derived, thus
reducing the double- to a single convolution. We first de-
fine functions Ul(τ , β),

Ul(τ , β) = e−(β/τ)/τ l/2, (A.4)

and their Laplace transform can be written as

Ûl(η, β) =
∫ ∞

0

e−ητ−(β/τ) dτ

τ l/2
(A.5)

= 2
(
β

η

) 2−l
4

K l−2
2

(
2
√
ηβ
)
, (A.6)

where Kn(z) is the modified Bessel function of the second
kind.

Of particular interest here are the cases l = 5 and l = 7,
and their Laplace transforms can be written

Û5(η, β) =
√
πe−2

√
ηβ
(
2
√
ηβ + 1

)
2β3/2

(A.7)

Û7(η, β) =
√
πe−2

√
ηβ
(
4ηβ + 6

√
ηβ + 3

)
4β5/2

(A.8)

The expression for Q(τ ; Rf |Ri) can now be written in
terms of Ul (see Eqs. 7 and A.4) as

Q(τ ; Rf |Ri) =
(

3
2π

) 3
2

U5(τ , 3|Rf −Ri|2/2). (A.9)

Using the abbreviations β1 = 3|Rexit − s|2/2 and β2 =
3|s − r0|2/2 the convolution in the expression for I(τ) is
then expressed simply as a product of the two Laplace
transforms, U5(η, β1) and U5(η, β2) (times a constant) which
yields

Î(η) =
27e−2

√
ηβ

32π2(β1β2)3/2

(
1 + 2

√
ηβ + 4η

√
β1β2

)
, (A.10)

where β = (
√
β1 +

√
β2)2. The expression in Eq. A.10

can now be written as

Î(η) =
27β

3
2

8π5/2β1β2

(U7(η, β) + γU5(η, β)) , (A.11)

where

γ =
β − 3

√
β1β2

2β
√
β1β2

(A.12)

Inverting the expression in Eq. A.11 to time domain we
have

I(τ) =
27β

3
2 e−

β
τ

8π5/2β1β2

(
1

τ7/2
+

γ

τ5/2

)
, (A.13)

which is the analytic expression for I(τ) that we sought.
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